高斯模糊的算法
您现在的位置: 学网 >> 程序开发 >> C# >> 正文
【C#】

通常,图像处理软件会提供"模糊"(blur)滤镜,使图片产生模糊的效果。

"模糊"的算法有很多种,其中有一种叫做"高斯模糊"(Gaussian Blur)。它将正态分布(又名"高斯分布")用于图像处理。

本文介绍"高斯模糊"的算法,你会看到这是一个非常简单易懂的算法。本质上,它是一种数据平滑技术(data smoothing),适用于多个场合,图像处理恰好提供了一个直观的应用实例。

一、高斯模糊的原理

所谓"模糊",可以理解成每一个像素都取周边像素的平均值。

上图中,2是中间点,周边点都是1。

"中间点"取"周围点"的平均值,就会变成1。在数值上,这是一种"平滑化"。在图形上,就相当于产生"模糊"效果,"中间点"失去细节。

显然,计算平均值时,取值范围越大,"模糊效果"越强烈。

上面分别是原图、模糊半径3像素、模糊半径10像素的效果。模糊半径越大,图像就越模糊。从数值角度看,就是数值越平滑。

接下来的问题就是,既然每个点都要取周边像素的平均值,那么应该如何分配权重呢?

如果使用简单平均,显然不是很合理,因为图像都是连续的,越靠近的点关系越密切,越远离的点关系越疏远。因此,加权平均更合理,距离越近的点权重越大,距离越远的点权重越小。

二、正态分布的权重

正态分布显然是一种可取的权重分配模式。

在图形上,正态分布是一种钟形曲线,越接近中心,取值越大,越远离中心,取值越小。

计算平均值的时候,我们只需要将"中心点"作为原点,其他点按照其在正态曲线上的位置,分配权重,就可以得到一个加权平均值。

三、高斯函数

上面的正态分布是一维的,图像都是二维的,所以我们需要二维的正态分布。

正态分布的密度函数叫做"高斯函数"(Gaussian function)。它的一维形式是:

根据一维高斯函数,可以推导得到二维高斯函数:

<img width="" height="" " src="http://img.ddvip.com/2013/1001/201310010501131681.gif"/>

有了这个函数 ,就可以计算每个点的权重了。

四、权重矩阵

假定中心点的坐标是(0,0),那么距离它最近的8个点的坐标如下:

更远的点以此类推。

为了计算权重矩阵,需要设定σ的值。假定σ=1.5,则模糊半径为1的权重矩阵如下:

这9个点的权重总和等于0.4787147,如果只计算这9个点的加权平均,还必须让它们的权重之和等于1,因此上面9个值还要分别除以0.4787147,得到最终的权重矩阵。

五、计算高斯模糊

有了权重矩阵,就可以计算高斯模糊的值了。

假设现有9个像素点,灰度值(0-255)如下:

每个点乘以自己的权重值:

得到

1

【推荐阅读】
学网·特别声明:
本站除部分特别声明禁止转载的专稿外的其他文章可以自由转载,但请务必注明出处和原始作者。本站所有文章版权归文章原始作者所有。对于被本站转载文章的个人和网站,我们表示深深的谢意。如果本站转载的文章有版权问题,请联系编辑人员Xababy#Gmail.com,我们尽快予以更正。
C#
Delphi
VB|VB.NET
VC|VC.NET
C++
软件工程
游戏开发
移动开发
C语言
Android开发
Java

没有任何图片资料
设为首页 - 收藏学网 - 关于学网 - RSS订阅 - 版权申明 - 友情链接 - 联系学网 - 网站地图 - 投稿学网
学网·2003-2011版权所有
© CopyRight 2004-2008 WwW.Xue5.CoM.Inc All Rights Reserved
合作、联系E-Mail:cainiaoo.cn#live.cn QQ:1103290,329700200

学网_致力于电脑使用知识、软件操作知识以及互联网应用知识的普及
陕ICP备05000834号